
Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Troubleshooting Deep Neural Networks

Josh Tobin (with Sergey Karayev and Pieter Abbeel)

!1

A Field Guide to Fixing Your Model

http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Help me make this guide better!
Help me find:

• Things that are unclear

• Missing debugging tips, tools, tricks, strategies

• Anything else that will make the guide better

Feedback to:
• joshptobin [at] gmail.com

• Twitter thread (https://twitter.com/josh_tobin_)

!2

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html
https://twitter.com/josh_tobin_

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why talk about DL troubleshooting?

XKCD, https://xkcd.com/1838/

!3

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why talk about DL troubleshooting?

!4

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why talk about DL troubleshooting?

Common sentiment among practitioners:

80-90% of time debugging and tuning

10-20% deriving math or implementing things

!5

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why is DL troubleshooting so hard?

!6

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Suppose you can’t reproduce a result
Learning curve from the paper

He, Kaiming, et al. "Deep residual learning for image recognition."  
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Your learning curve

0. Why is troubleshooting hard?

!7

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why is your performance worse?

Poor model
performance

0. Why is troubleshooting hard?

!8

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why is your performance worse?

Poor model
performance

Implementation
bugs

0. Why is troubleshooting hard?

!9

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Most DL bugs are invisible
0. Why is troubleshooting hard?

!10

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Labels out of order!

Most DL bugs are invisible
0. Why is troubleshooting hard?

(real bug I spent 1 day on early in my PhD)

!11

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why is your performance worse?

Poor model
performance

Implementation
bugs

0. Why is troubleshooting hard?

!12

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why is your performance worse?

Poor model
performance

Implementation
bugs

Hyperparameter
choices

0. Why is troubleshooting hard?

!13

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Andrej Karpathy, CS231n course notes

Models are sensitive to hyperparameters
0. Why is troubleshooting hard?

!14

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Andrej Karpathy, CS231n course notes

Models are sensitive to hyperparameters
Performance of a 30-layer ResNet with

different weight initializations

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification." Proceedings of the IEEE international conference on computer vision. 2015.

0. Why is troubleshooting hard?

!15

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why is your performance worse?
0. Why is troubleshooting hard?

Poor model
performance

Implementation
bugs

Hyperparameter
choices

!16

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why is your performance worse?

Data/model fit

0. Why is troubleshooting hard?

Poor model
performance

Implementation
bugs

Hyperparameter
choices

!17

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Data from the paper: ImageNet

Data / model fit
Yours: self-driving car images

0. Why is troubleshooting hard?

!18

http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why is your performance worse?
0. Why is troubleshooting hard?

Data/model fit

Poor model
performance

Implementation
bugs

Hyperparameter
choices

!19

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Why is your performance worse?

Dataset
construction

0. Why is troubleshooting hard?

Data/model fit

Poor model
performance

Implementation
bugs

Hyperparameter
choices

!20

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Constructing good datasets is hard
Amount of lost sleep over...

PhD Tesla

Slide from Andrej Karpathy’s talk “Building the Software 2.0 Stack” at TrainAI 2018, 5/10/2018

0. Why is troubleshooting hard?

!21

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Common dataset construction issues

• Not enough data

• Class imbalances

• Noisy labels

• Train / test from different distributions

• (Not the main focus of this guide)

0. Why is troubleshooting hard?

!22

http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Takeaways: why is troubleshooting hard?

• Hard to tell if you have a bug

• Lots of possible sources for the
same degradation in performance

• Results can be sensitive to small
changes in hyperparameters and
dataset makeup

0. Why is troubleshooting hard?

!23

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Strategy for DL troubleshooting

!24

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Key mindset for DL troubleshooting

Pessimism.

!25

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Key idea of DL troubleshooting

Since it’s hard to
disambiguate errors…

…Start simple and gradually
ramp up complexity

!26

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Tune hyper-
parameters

Implement
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve
model/data

Meets re-
quirements

!27

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Quick summary
Start  

simple

Overview

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

!28

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Quick summary

Implement
& debug

Start  
simple

Overview

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch &
reproduce a known result

!29

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Quick summary

Implement
& debug

Start  
simple

Evaluate

Overview

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch &
reproduce a known result

• Apply the bias-variance decomposition to
decide what to do next

!30

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Tune hyp-
eparams

Quick summary

Implement
& debug

Start  
simple

Evaluate

Overview

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch &
reproduce a known result

• Apply the bias-variance decomposition to
decide what to do next

• Use coarse-to-fine random searches

!31

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Tune hyp-
eparams

Quick summary

Implement
& debug

Start  
simple

Evaluate

Improve
model/data

Overview

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch &
reproduce a known result

• Apply the bias-variance decomposition to
decide what to do next

• Use coarse-to-fine random searches

• Make your model bigger if you underfit; add
data or regularize if you overfit

!32

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

We’ll assume you already have…

• Initial test set

• A single metric to improve

• Target performance based on human-level
performance, published results, previous
baselines, etc

!33

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

We’ll assume you already have…

• Initial test set

• A single metric to improve

• Target performance based on human-level
performance, published results, previous
baselines, etc

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!34

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Tune hyper-
parameters

Implement
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve
model/data

Meets re-
quirements

!35

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Normalize inputs

Starting simple

Choose a simple
architecture

Simplify the problem

Use sensible defaults

Steps

b

a

c

d

1. Start simple

!36

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Demystifying neural network architecture selection
1. Start simple

Your input data is… Start here Consider using this later

Images LeNet-like architecture

LSTM with one hidden
layer

Fully connected neural net
with one hidden layer

ResNet

Attention model or
WaveNet-like model

Problem-dependent

Images

Sequences

Other

!37

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Dealing with multiple input modalities

“This”

“is”

“a”

“cat”

1. Start simple

Input 1

Input 2

Input 3

!38

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Dealing with multiple input modalities

“This”

“is”

“a”

“cat”

1. Map each input into a (lower-dimensional) feature space

1. Start simple

Input 2

Input 3

Input 1

!39

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Dealing with multiple input modalities

1. Map each input into a (lower-dimensional) feature space
ConvNet Flatten

(64-dim)

(72-dim)

 (48-dim)

“This”

“is”

“a”

“cat”

LSTM

1. Start simple

Input 2

Input 3

Input 1

!40

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Dealing with multiple input modalities

2. Concatenate
ConvNet Flatten Con“cat”

“This”

“is”

“a”

“cat”

LSTM

(184-dim)

1. Start simple

Input 2

Input 3

Input 1

(64-dim)

(72-dim)

 (48-dim)

!41

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Dealing with multiple input modalities

3. Pass through fully connected layers to output
ConvNet Flatten Concat

“This”

“is”

“a”

“cat”

LSTM

FC FC Output

T/F

1. Start simple

Input 2

Input 3

Input 1

(64-dim)

(72-dim)

 (48-dim)

(184-dim)

(256-dim)

(128-dim)

!42

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Normalize inputs

Starting simple

Choose a simple
architecture

Simplify the problem

Use sensible defaults

Steps

b

a

c

d

1. Start simple

!43

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Recommended network / optimizer defaults

• Optimizer: Adam optimizer with learning rate 3e-4

• Activations: relu (FC and Conv models), tanh (LSTMs)

• Initialization: He et al. normal (relu), Glorot normal (tanh)

• Regularization: None

• Data normalization: None

1. Start simple

!44

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Definitions of recommended initializers
• (n is the number of inputs, m is

the number of outputs)

• He et al. normal (used for ReLU) 
 
 
 

• Glorot normal (used for tanh)

1. Start simple

N

0,

r
2

n

!

<latexit sha1_base64="71oIrQeCI+zKtAqPcxHfa3NQrcI=">AAACFnicbVDLSgMxFM3UV62vqks3wSJU0DJTBF0W3LgqFewDOqVk0kwbmsmMyR2hDPMVbvwVNy4UcSvu/BszbRfaeiBwOOdebs7xIsE12Pa3lVtZXVvfyG8WtrZ3dveK+wctHcaKsiYNRag6HtFMcMmawEGwTqQYCTzB2t74OvPbD0xpHso7mESsF5Ch5D6nBIzUL567AYERJSKpp65gPpTtM+zqewWJ6ytCk2qayDR1FR+O4LRfLNkVewq8TJw5KaE5Gv3ilzsIaRwwCVQQrbuOHUEvIQo4FSwtuLFmEaFjMmRdQyUJmO4l01gpPjHKAPuhMk8Cnqq/NxISaD0JPDOZhdCLXib+53Vj8K96CZdRDEzS2SE/FhhCnHWEB1wxCmJiCKGKm79iOiKmDTBNFkwJzmLkZdKqVhy74txelGr1eR15dISOURk56BLV0A1qoCai6BE9o1f0Zj1ZL9a79TEbzVnznUP0B9bnD/n6n+k=</latexit><latexit sha1_base64="71oIrQeCI+zKtAqPcxHfa3NQrcI=">AAACFnicbVDLSgMxFM3UV62vqks3wSJU0DJTBF0W3LgqFewDOqVk0kwbmsmMyR2hDPMVbvwVNy4UcSvu/BszbRfaeiBwOOdebs7xIsE12Pa3lVtZXVvfyG8WtrZ3dveK+wctHcaKsiYNRag6HtFMcMmawEGwTqQYCTzB2t74OvPbD0xpHso7mESsF5Ch5D6nBIzUL567AYERJSKpp65gPpTtM+zqewWJ6ytCk2qayDR1FR+O4LRfLNkVewq8TJw5KaE5Gv3ilzsIaRwwCVQQrbuOHUEvIQo4FSwtuLFmEaFjMmRdQyUJmO4l01gpPjHKAPuhMk8Cnqq/NxISaD0JPDOZhdCLXib+53Vj8K96CZdRDEzS2SE/FhhCnHWEB1wxCmJiCKGKm79iOiKmDTBNFkwJzmLkZdKqVhy74txelGr1eR15dISOURk56BLV0A1qoCai6BE9o1f0Zj1ZL9a79TEbzVnznUP0B9bnD/n6n+k=</latexit><latexit sha1_base64="71oIrQeCI+zKtAqPcxHfa3NQrcI=">AAACFnicbVDLSgMxFM3UV62vqks3wSJU0DJTBF0W3LgqFewDOqVk0kwbmsmMyR2hDPMVbvwVNy4UcSvu/BszbRfaeiBwOOdebs7xIsE12Pa3lVtZXVvfyG8WtrZ3dveK+wctHcaKsiYNRag6HtFMcMmawEGwTqQYCTzB2t74OvPbD0xpHso7mESsF5Ch5D6nBIzUL567AYERJSKpp65gPpTtM+zqewWJ6ytCk2qayDR1FR+O4LRfLNkVewq8TJw5KaE5Gv3ilzsIaRwwCVQQrbuOHUEvIQo4FSwtuLFmEaFjMmRdQyUJmO4l01gpPjHKAPuhMk8Cnqq/NxISaD0JPDOZhdCLXib+53Vj8K96CZdRDEzS2SE/FhhCnHWEB1wxCmJiCKGKm79iOiKmDTBNFkwJzmLkZdKqVhy74txelGr1eR15dISOURk56BLV0A1qoCai6BE9o1f0Zj1ZL9a79TEbzVnznUP0B9bnD/n6n+k=</latexit><latexit sha1_base64="71oIrQeCI+zKtAqPcxHfa3NQrcI=">AAACFnicbVDLSgMxFM3UV62vqks3wSJU0DJTBF0W3LgqFewDOqVk0kwbmsmMyR2hDPMVbvwVNy4UcSvu/BszbRfaeiBwOOdebs7xIsE12Pa3lVtZXVvfyG8WtrZ3dveK+wctHcaKsiYNRag6HtFMcMmawEGwTqQYCTzB2t74OvPbD0xpHso7mESsF5Ch5D6nBIzUL567AYERJSKpp65gPpTtM+zqewWJ6ytCk2qayDR1FR+O4LRfLNkVewq8TJw5KaE5Gv3ilzsIaRwwCVQQrbuOHUEvIQo4FSwtuLFmEaFjMmRdQyUJmO4l01gpPjHKAPuhMk8Cnqq/NxISaD0JPDOZhdCLXib+53Vj8K96CZdRDEzS2SE/FhhCnHWEB1wxCmJiCKGKm79iOiKmDTBNFkwJzmLkZdKqVhy74txelGr1eR15dISOURk56BLV0A1qoCai6BE9o1f0Zj1ZL9a79TEbzVnznUP0B9bnD/n6n+k=</latexit>

N

0,

r
2

n+m

!

<latexit sha1_base64="zIQOpEBJhC7QdJVej5ZiUKz47uk=">AAACGnicbVDLSgMxFM3UV62vqks3wSJUlDJTBF0W3LgqFewDOqVk0kwbmsmMyR2hDPMdbvwVNy4UcSdu/BszbRfaeiBwOOdebs7xIsE12Pa3lVtZXVvfyG8WtrZ3dveK+wctHcaKsiYNRag6HtFMcMmawEGwTqQYCTzB2t74OvPbD0xpHso7mESsF5Ch5D6nBIzULzpuQGBEiUjqqSuYD2X7HLv6XkHi+orQpJomEp/hIE1dxYcjOO0XS3bFngIvE2dOSmiORr/46Q5CGgdMAhVE665jR9BLiAJOBUsLbqxZROiYDFnXUEkCpnvJNFqKT4wywH6ozJOAp+rvjYQEWk8Cz0xmQfSil4n/ed0Y/KtewmUUA5N0dsiPBYYQZz3hAVeMgpgYQqji5q+YjohpBEybBVOCsxh5mbSqFceuOLcXpVp9XkceHaFjVEYOukQ1dIMaqIkoekTP6BW9WU/Wi/VufcxGc9Z85xD9gfX1Axa5oOk=</latexit><latexit sha1_base64="zIQOpEBJhC7QdJVej5ZiUKz47uk=">AAACGnicbVDLSgMxFM3UV62vqks3wSJUlDJTBF0W3LgqFewDOqVk0kwbmsmMyR2hDPMdbvwVNy4UcSdu/BszbRfaeiBwOOdebs7xIsE12Pa3lVtZXVvfyG8WtrZ3dveK+wctHcaKsiYNRag6HtFMcMmawEGwTqQYCTzB2t74OvPbD0xpHso7mESsF5Ch5D6nBIzULzpuQGBEiUjqqSuYD2X7HLv6XkHi+orQpJomEp/hIE1dxYcjOO0XS3bFngIvE2dOSmiORr/46Q5CGgdMAhVE665jR9BLiAJOBUsLbqxZROiYDFnXUEkCpnvJNFqKT4wywH6ozJOAp+rvjYQEWk8Cz0xmQfSil4n/ed0Y/KtewmUUA5N0dsiPBYYQZz3hAVeMgpgYQqji5q+YjohpBEybBVOCsxh5mbSqFceuOLcXpVp9XkceHaFjVEYOukQ1dIMaqIkoekTP6BW9WU/Wi/VufcxGc9Z85xD9gfX1Axa5oOk=</latexit><latexit sha1_base64="zIQOpEBJhC7QdJVej5ZiUKz47uk=">AAACGnicbVDLSgMxFM3UV62vqks3wSJUlDJTBF0W3LgqFewDOqVk0kwbmsmMyR2hDPMdbvwVNy4UcSdu/BszbRfaeiBwOOdebs7xIsE12Pa3lVtZXVvfyG8WtrZ3dveK+wctHcaKsiYNRag6HtFMcMmawEGwTqQYCTzB2t74OvPbD0xpHso7mESsF5Ch5D6nBIzULzpuQGBEiUjqqSuYD2X7HLv6XkHi+orQpJomEp/hIE1dxYcjOO0XS3bFngIvE2dOSmiORr/46Q5CGgdMAhVE665jR9BLiAJOBUsLbqxZROiYDFnXUEkCpnvJNFqKT4wywH6ozJOAp+rvjYQEWk8Cz0xmQfSil4n/ed0Y/KtewmUUA5N0dsiPBYYQZz3hAVeMgpgYQqji5q+YjohpBEybBVOCsxh5mbSqFceuOLcXpVp9XkceHaFjVEYOukQ1dIMaqIkoekTP6BW9WU/Wi/VufcxGc9Z85xD9gfX1Axa5oOk=</latexit><latexit sha1_base64="zIQOpEBJhC7QdJVej5ZiUKz47uk=">AAACGnicbVDLSgMxFM3UV62vqks3wSJUlDJTBF0W3LgqFewDOqVk0kwbmsmMyR2hDPMdbvwVNy4UcSdu/BszbRfaeiBwOOdebs7xIsE12Pa3lVtZXVvfyG8WtrZ3dveK+wctHcaKsiYNRag6HtFMcMmawEGwTqQYCTzB2t74OvPbD0xpHso7mESsF5Ch5D6nBIzULzpuQGBEiUjqqSuYD2X7HLv6XkHi+orQpJomEp/hIE1dxYcjOO0XS3bFngIvE2dOSmiORr/46Q5CGgdMAhVE665jR9BLiAJOBUsLbqxZROiYDFnXUEkCpnvJNFqKT4wywH6ozJOAp+rvjYQEWk8Cz0xmQfSil4n/ed0Y/KtewmUUA5N0dsiPBYYQZz3hAVeMgpgYQqji5q+YjohpBEybBVOCsxh5mbSqFceuOLcXpVp9XkceHaFjVEYOukQ1dIMaqIkoekTP6BW9WU/Wi/VufcxGc9Z85xD9gfX1Axa5oOk=</latexit> !45

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Normalize inputs

Starting simple

Choose a simple
architecture

Simplify the problem

Use sensible defaultsb

a

c

Steps

d

1. Start simple

!46

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Important to normalize scale of input data

• Subtract mean and divide by variance

• For images, fine to scale values to [0, 1]  
(e.g., by dividing by 255) 
[Careful, make sure your library doesn’t do it for you!]

1. Start simple

!47

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Normalize inputs

Starting simple

Choose a simple
architecture

Simplify the problem

Use sensible defaultsb

a

c

Steps

d

1. Start simple

!48

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Consider simplifying the problem as well

• Start with a small training set (~10,000 examples)

• Use a fixed number of objects, classes, smaller
image size, etc.

• Create a simpler synthetic training set

1. Start simple

!49

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Simplest model for pedestrian detection

• Start with a subset of 10,000 images
for training, 1,000 for val, and 500 for
test

• Use a LeNet architecture with
sigmoid cross-entropy loss

• Adam optimizer with LR 3e-4

• No regularization

1. Start simple

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!50

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Normalize inputs

Starting simple
Choose a simple

architecture

Simplify the problem

Use sensible defaultsb

a

c

Steps

d

Summary
• LeNet, LSTM, or Fully

Connected

• Start with a simpler
version of your problem
(e.g., smaller dataset)

• Adam optimizer & no
regularization

• Subtract mean and divide
by std, or just divide by
255 (ims)

1. Start simple

!51

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Tune hyper-
parameters

Implement
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve
model/data

Meets re-
quirements

!52

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Implementing bug-free DL models

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps

2. Implement & debug

!53

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Preview: the five most common DL bugs
• Incorrect shapes for your tensors 

Can fail silently! E.g., accidental broadcasting: x.shape =
(None,), y.shape = (None, 1), (x+y).shape = (None, None)

• Pre-processing inputs incorrectly  
E.g., Forgetting to normalize, or too much pre-processing

• Incorrect input to your loss function  
E.g., softmaxed outputs to a loss that expects logits

• Forgot to set up train mode for the net correctly  
E.g., toggling train/eval, controlling batch norm dependencies

• Numerical instability - inf/NaN 
Often stems from using an exp, log, or div operation

2. Implement & debug

!54

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

General advice for implementing your model
Lightweight implementation

• Minimum possible new lines of code
for v1

• Rule of thumb: <200 lines

• (Tested infrastructure components
are fine)

2. Implement & debug

!55

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

General advice for implementing your model
Lightweight implementation

• Minimum possible new lines of code
for v1

• Rule of thumb: <200 lines

• (Tested infrastructure components
are fine)

2. Implement & debug

Use off-the-shelf components, e.g.,

• Keras

• tf.layers.dense(…)  
instead of  
tf.nn.relu(tf.matmul(W, x))

• tf.losses.cross_entropy(…)  
instead of writing out the exp

!56

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

General advice for implementing your model
Lightweight implementation

• Minimum possible new lines of code
for v1

• Rule of thumb: <200 lines

• (Tested infrastructure components
are fine)

2. Implement & debug

Build complicated data pipelines later

• Start with a dataset you can load into
memory

Use off-the-shelf components, e.g.,

• Keras

• tf.layers.dense(…)  
instead of  
tf.nn.relu(tf.matmul(W, x))

• tf.losses.cross_entropy(…)  
instead of writing out the exp

!57

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Implementing bug-free DL models

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps

2. Implement & debug

!58

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Get your model to
runa Shape

mismatch

Casting
issue

OOM

Other

Common
issues Recommended resolution

Step through model creation and
inference in a debugger

Scale back memory intensive
operations one-by-one

Standard debugging toolkit (Stack
Overflow + interactive debugger)

2. Implement & debug

Implementing bug-free DL models

!59

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Get your model to
runa Shape

mismatch

Casting
issue

OOM

Other

Common
issues Recommended resolution

Step through model creation and
inference in a debugger

Scale back memory intensive
operations one-by-one

Standard debugging toolkit (Stack
Overflow + interactive debugger)

2. Implement & debug

Implementing bug-free DL models

!60

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Debuggers for DL code
• Pytorch: easy, use ipdb

• tensorflow: trickier  
 
Option 1: step through graph creation

2. Implement & debug

!61

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Debuggers for DL code
• Pytorch: easy, use ipdb

• tensorflow: trickier  
 
Option 2: step into training loop

Evaluate tensors using sess.run(…)

2. Implement & debug

!62

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Debuggers for DL code
• Pytorch: easy, use ipdb

• tensorflow: trickier  
 
Option 3: use tfdb

Stops
execution at
each
sess.run(…)
and lets you
inspect

python -m tensorflow.python.debug.examples.debug_mnist --debug

2. Implement & debug

!63

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Get your model to
runa Shape

mismatch

Casting
issue

OOM

Other

Common
issues Recommended resolution

Step through model creation and
inference in a debugger

Scale back memory intensive
operations one-by-one

Standard debugging toolkit (Stack
Overflow + interactive debugger)

Implementing bug-free DL models
2. Implement & debug

!64

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Shape
mismatch Undefined

shapes

Incorrect
shapes

Common
issues Most common causes

• Confusing tensor.shape, tf.shape(tensor),
tensor.get_shape()

• Reshaping things to a shape of type Tensor (e.g.,
when loading data from a file)

• Flipped dimensions when using tf.reshape(…)
• Took sum, average, or softmax over wrong

dimension
• Forgot to flatten after conv layers
• Forgot to get rid of extra “1” dimensions (e.g., if

shape is (None, 1, 1, 4)
• Data stored on disk in a different dtype than

loaded (e.g., stored a float64 numpy array, and
loaded it as a float32)

Implementing bug-free DL models
2. Implement & debug

!65

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Casting issue
Data not in

float32

Common
issues Most common causes

• Forgot to cast images from uint8 to float32
• Generated data using numpy in float64, forgot to

cast to float32

Implementing bug-free DL models
2. Implement & debug

!66

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

OOM
Too big a

tensor

Too much
data

Common
issues Most common causes

Duplicating
operations

Other
processes

• Other processes running on your GPU

• Memory leak due to creating multiple models in
the same session

• Repeatedly creating an operation (e.g., in a
function that gets called over and over again)

• Too large a batch size for your model (e.g.,
during evaluation)

• Too large fully connected layers

• Loading too large a dataset into memory, rather
than using an input queue

• Allocating too large a buffer for dataset creation

Implementing bug-free DL models
2. Implement & debug

!67

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Other common
errors Other bugs

Common
issues Most common causes

• Forgot to initialize variables
• Forgot to turn off bias when using batch norm
• “Fetch argument has invalid type” - usually you

overwrote one of your ops with an output during
training

Implementing bug-free DL models
2. Implement & debug

!68

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps

Implementing bug-free DL models
2. Implement & debug

!69

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

Implementing bug-free DL models
2. Implement & debug

!70

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

• Flipped the sign of the loss function / gradient
• Learning rate too high
• Softmax taken over wrong dimension

Most common causes

Implementing bug-free DL models
2. Implement & debug

!71

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

• Numerical issue. Check all exp, log, and div operations
• Learning rate too high

Implementing bug-free DL models
2. Implement & debug

!72

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

• Data or labels corrupted (e.g., zeroed, incorrectly
shuffled, or preprocessed incorrectly)

• Learning rate too high

Implementing bug-free DL models
2. Implement & debug

!73

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

• Learning rate too low
• Gradients not flowing through the whole model
• Too much regularization
• Incorrect input to loss function (e.g., softmax instead of

logits)
• Data or labels corrupted

Implementing bug-free DL models
2. Implement & debug

!74

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

• Flipped the sign of the loss function / gradient
• Learning rate too high
• Softmax taken over wrong dimension

Most common causes

• Numerical issue. Check all exp, log, and div operations
• Learning rate too high

• Data or labels corrupted (e.g., zeroed or incorrectly
shuffled)

• Learning rate too high

• Learning rate too low
• Gradients not flowing through the whole model
• Too much regularization
• Incorrect input to loss function (e.g., softmax instead of

logits)
• Data or labels corrupted

Implementing bug-free DL models
2. Implement & debug

!75

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps

Implementing bug-free DL models
2. Implement & debug

!76

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Hierarchy of known results
• Official model implementation evaluated on similar

dataset to yoursMore
useful

Less
useful

You can:  

• Walk through code line-by-line and
ensure you have the same output

• Ensure your performance is up to par
with expectations

2. Implement & debug

!77

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Hierarchy of known results
• Official model implementation evaluated on similar

dataset to yours

• Official model implementation evaluated on benchmark
(e.g., MNIST)

More
useful

Less
useful

You can:  

• Walk through code line-by-line and
ensure you have the same output

2. Implement & debug

!78

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Hierarchy of known results
• Official model implementation evaluated on similar dataset

to yours

• Official model implementation evaluated on benchmark
(e.g., MNIST)

• Unofficial model implementation

• Results from the paper (with no code)

• Results from your model on a benchmark dataset (e.g.,
MNIST)

• Results from a similar model on a similar dataset

• Super simple baselines (e.g., average of outputs or linear
regression)

More
useful

Less
useful

You can:  

• Same as before, but with lower
confidence

2. Implement & debug

!79

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Hierarchy of known results
• Official model implementation evaluated on similar

dataset to yours

• Official model implementation evaluated on benchmark
(e.g., MNIST)

• Unofficial model implementation

• Results from a paper (with no code)

More
useful

Less
useful

You can:  

• Ensure your performance is up to par
with expectations

2. Implement & debug

!80

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Hierarchy of known results
• Official model implementation evaluated on similar

dataset to yours

• Official model implementation evaluated on benchmark
(e.g., MNIST)

• Unofficial model implementation

• Results from the paper (with no code)

• Results from your model on a benchmark dataset (e.g.,
MNIST)

More
useful

Less
useful

You can:  

• Make sure your model performs well in a
simpler setting

2. Implement & debug

!81

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Hierarchy of known results
• Official model implementation evaluated on similar dataset

to yours

• Official model implementation evaluated on benchmark
(e.g., MNIST)

• Unofficial model implementation

• Results from the paper (with no code)

• Results from your model on a benchmark dataset (e.g.,
MNIST)

• Results from a similar model on a similar dataset

• Super simple baselines (e.g., average of outputs or linear
regression)

More
useful

Less
useful

You can:  

• Get a general sense of what kind of
performance can be expected

2. Implement & debug

!82

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Hierarchy of known results
• Official model implementation evaluated on similar dataset

to yours

• Official model implementation evaluated on benchmark
(e.g., MNIST)

• Unofficial model implementation

• Results from the paper (with no code)

• Results from your model on a benchmark dataset (e.g.,
MNIST)

• Results from a similar model on a similar dataset

• Super simple baselines (e.g., average of outputs or linear
regression)

More
useful

Less
useful

You can:  

• Make sure your model is learning
anything at all

2. Implement & debug

!83

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Hierarchy of known results
• Official model implementation evaluated on similar dataset

to yours

• Official model implementation evaluated on benchmark
(e.g., MNIST)

• Unofficial model implementation

• Results from the paper (with no code)

• Results from your model on a benchmark dataset (e.g.,
MNIST)

• Results from a similar model on a similar dataset

• Super simple baselines (e.g., average of outputs or linear
regression)

More
useful

Less
useful

2. Implement & debug

!84

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Summary: how to implement & debug
2. Implement & debug

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps Summary

• Step through in debugger & watch out
for shape, casting, and OOM errors

• Look for corrupted data, over-
regularization, broadcasting errors

• Keep iterating until model performs
up to expectations

!85

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Tune hyper-
parameters

Implement
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve
model/data

Meets re-
quirements

!86

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Bias-variance decomposition
3. Evaluation

!87

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Bias-variance decomposition
3. Evaluation

!88

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Bias-variance decomposition
3. Evaluation

!89

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

25
2 27

5 32
2 34

Irre
ducible error

Avoidable bias

(i.e., underfitt
ing)

Train error

Variance (i.e
.,

overfitt
ing) Val error

Val set overfitt
ing

Test error
0

5

10

15

20

25

30

35

40
Breakdown of test error by source

Bias-variance decomposition
3. Evaluation

!90

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Test error = irreducible error + bias + variance + val overfitting

This assumes train, val, and test all come from the same
distribution. What if not?

Bias-variance decomposition
3. Evaluation

!91

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Handling distribution shift

Train data Test data

Use two val sets: one sampled from training distribution and
one from test distribution

3. Evaluation

!92

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

The bias-variance tradeoff
3. Evaluation

!93

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Bias-variance with distribution shift
3. Evaluation

!94

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Bias-variance with distribution shift

25
2 27

2 29
3 32

2 34

Irr
ed

uc
ibl

e e
rro

r
Av

oid
ab

le
bia

s

(i.e
.,

un
de

rfi
tti

ng
)

Tr
ain

 er
ro

r

Va
ria

nc
e

Tr
ain

 va
l e

rro
r

Di
str

ibu
tio

n
sh

ift
Te

st
va

l e
rro

r
Va

l o
ve

rfi
tti

ng

Te
st

er
ro

r

0

5

10

15

20

25

30

35

40
Breakdown of test error by source

3. Evaluation

!95

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

Error source Value

Goal
performance 1%

Train error 20%

Validation error 27%

Test error 28%

Train - goal = 19% 
(under-fitting)

3. Evaluation

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!96

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

Error source Value

Goal
performance 1%

Train error 20%

Validation error 27%

Test error 28%

Val - train = 7% 
(over-fitting)

3. Evaluation

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!97

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

Error source Value

Goal
performance 1%

Train error 20%

Validation error 27%

Test error 28%

Test - val = 1% 
(looks good!)

3. Evaluation

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!98

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Test error = irreducible error + bias + variance  
 + distribution shift + val overfitting

Summary: evaluating model performance
3. Evaluation

!99

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Tune hyper-
parameters

Implement
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve
model/data

Meets re-
quirements

!100

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Address distribution
shift

Prioritizing improvements  
(i.e., applying the bias-variance tradeoff)

Address under-fitting

Re-balance datasets  
(if applicable)

Address over-fittingb

a

c

Steps

d

4. Prioritize improvements

!101

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Addressing under-fitting (i.e., reducing bias)

Try first

Try later

A. Make your model bigger (i.e., add layers or use
more units per layer)

B. Reduce regularization

C. Error analysis

D. Choose a different (closer to state-of-the art)
model architecture (e.g., move from LeNet to
ResNet)

E. Tune hyper-parameters (e.g., learning rate)

F. Add features

4. Prioritize improvements

!102

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy  
 (i.e., 1% error)

Error source Value Value

Goal performance 1% 1%

Train error 20% 7%

Validation error 27% 19%

Test error 28% 20%

Add more layers
to the ConvNet

4. Prioritize improvements

!103

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy  
 (i.e., 1% error)

Error source Value Value Value

Goal performance 1% 1% 1%

Train error 20% 10% 3%

Validation error 27% 19% 10%

Test error 28% 20% 10%

Switch to
ResNet-101

4. Prioritize improvements

!104

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy  
 (i.e., 1% error)

Error source Value Value Value Value

Goal performance 1% 1% 1% 1%

Train error 20% 10% 3% 0.8%

Validation error 27% 19% 10% 12%

Test error 28% 20% 10% 12%

Tune learning
rate

4. Prioritize improvements

!105

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Prioritizing improvements  
(i.e., applying the bias-variance tradeoff)

4. Prioritize improvements

!106

Address distribution
shift

Address under-fitting

Re-balance datasets  
(if applicable)

Address over-fittingb

a

c

Steps

d

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Addressing over-fitting (i.e., reducing variance)
Try first

Try later

A. Add more training data (if possible!)

B. Add normalization (e.g., batch norm, layer norm)

C. Add data augmentation

D. Increase regularization (e.g., dropout, L2, weight decay)

E. Error analysis

F. Choose a different (closer to state-of-the-art) model
architecture

G. Tune hyperparameters

H. Early stopping

I. Remove features

J. Reduce model size

4. Prioritize improvements

!107

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Addressing over-fitting (i.e., reducing variance)
Try first

Try later

A. Add more training data (if possible!)

B. Add normalization (e.g., batch norm, layer norm)

C. Add data augmentation

D. Increase regularization (e.g., dropout, L2, weight decay)

E. Error analysis

F. Choose a different (closer to state-of-the-art) model
architecture

G. Tune hyperparameters

H. Early stopping

I. Remove features

J. Reduce model size

4. Prioritize improvements

Not
recommended!

!108

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

Error source Value

Goal performance 1%

Train error 0.8%

Validation error 12%

Test error 12%

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!109

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

Error source Value Value

Goal performance 1% 1%

Train error 0.8% 1.5%

Validation error 12% 5%

Test error 12% 6%

Increase dataset
size to 250,000

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!110

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

Error source Value Value Value

Goal performance 1% 1% 1%

Train error 0.8% 1.5% 1.7%

Validation error 12% 5% 4%

Test error 12% 6% 4%

Add weight
decay

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!111

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

Error source Value Value Value Value

Goal performance 1% 1% 1% 1%

Train error 0.8% 1.5% 1.7% 2%

Validation error 12% 5% 4% 2.5%

Test error 12% 6% 4% 2.6%

Add data
augmentation

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!112

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Train, val, and test error for pedestrian detection

Error source Value Value Value Value Value

Goal performance 1% 1% 1% 1% 1%

Train error 0.8% 1.5% 1.7% 2% 0.6%

Validation error 12% 5% 4% 2.5% 0.9%

Test error 12% 6% 4% 2.6% 1.0%

Tune num layers, optimizer params, weight
initialization, kernel size, weight decay

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

!113

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Prioritizing improvements  
(i.e., applying the bias-variance tradeoff)

4. Prioritize improvements

!114

Address distribution
shift

Address under-fitting

Re-balance datasets  
(if applicable)

Address over-fittingb

a

c

Steps

d

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Addressing distribution shift

Try first

Try later

A. Analyze test-val set errors & collect more
training data to compensate

B. Analyze test-val set errors & synthesize more
training data to compensate

C. Apply domain adaptation techniques to
training & test distributions

4. Prioritize improvements

!115

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

4. Prioritize improvements

!116

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 1: hard-to-see
pedestrians

4. Prioritize improvements

!117

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 2: reflections

4. Prioritize improvements

!118

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 3 (test-val only):
night scenes

4. Prioritize improvements

!119

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Error analysis
Error type Error %

(train-val)
Error %
(test-val) Potential solutions Priority

1. Hard-to-see
pedestrians 0.1% 0.1% • Better sensors Low

2. Reflections 0.3% 0.3%
• Collect more data with reflections

• Add synthetic reflections to train set

• Try to remove with pre-processing

• Better sensors

Medium

3. Nighttime
scenes 0.1% 1%

• Collect more data at night

• Synthetically darken training images

• Simulate night-time data

• Use domain adaptation

High

4. Prioritize improvements

!120

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Domain adaptation

What is it?

Techniques to train on “source”
distribution and generalize to another
“target” using only unlabeled data or

limited labeled data

When should you consider using it?

• Access to labeled data from test
distribution is limited

• Access to relatively similar data is
plentiful

4. Prioritize improvements

!121

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Types of domain adaptation

Type Use case Example techniques

Supervised You have limited data
from target domain

• Fine-tuning a pre-
trained model

• Adding target data to
train set

Un-supervised
You have lots of un-
labeled data from target
domain

• Correlation Alignment
(CORAL)

• Domain confusion

• CycleGAN

4. Prioritize improvements

!122

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Prioritizing improvements  
(i.e., applying the bias-variance tradeoff)

4. Prioritize improvements

!123

Address distribution
shift

Address under-fitting

Re-balance datasets  
(if applicable)

Address over-fittingb

a

c

Steps

d

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Rebalancing datasets
4. Prioritize improvements

• If (test)-val looks significantly better than test,
you overfit to the val set

• This happens with small val sets or lots of hyper
parameter tuning

• When it does, recollect val data

!124

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Tune hyper-
parameters

Implement
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve
model/data

Meets re-
quirements

!125

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Hyperparameter optimization
Model & optimizer choices?

Network: ResNet

 - How many layers?

 - Weight initialization?

 - Kernel size?

 - Etc

Optimizer: Adam

 - Batch size?

 - Learning rate?

 - beta1, beta2, epsilon?

Regularization

 - ….

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

5. Hyperparameter optimization

!126

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Which hyper-parameters to tune?
Choosing hyper-parameters

• More sensitive to some than others

• Depends on choice of model

• Rules of thumb (only) to the right

• Sensitivity is relative to default values!  

(e.g., if you are using all-zeros weight
initialization or vanilla SGD, changing to the
defaults will make a big difference)

Hyperparameter Approximate sensitivity
Learning rate High

Optimizer choice Low
Other optimizer params 

(e.g., Adam beta1) Low

Batch size Low
Weight initialization Medium

Loss function High
Model depth Medium

Layer size High
Layer params  

(e.g., kernel size) Medium

Weight of regularization Medium
Nonlinearity Low

5. Hyperparameter optimization

!127

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Method 1: manual hyperparam optimization
How it works

• Understand the algorithm

• E.g., higher learning rate means faster

less stable training

• Train & evaluate model

• Guess a better hyperparam value & re-

evaluate

• Can be combined with other methods

(e.g., manually select parameter ranges to
optimizer over)

Advantages

Disadvantages

• For a skilled practitioner, may require least
computation to get good result

• Requires detailed understanding of the
algorithm

• Time-consuming

5. Hyperparameter optimization

!128

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Method 2: grid search
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

• Super simple to implement

• Can produce good results

• Not very efficient: need to train on all
cross-combos of hyper-parameters

• May require prior knowledge about
parameters to get 
good results

Advantages

5. Hyperparameter optimization

!129

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Method 3: random search
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

5. Hyperparameter optimization

!130

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

5. Hyperparameter optimization

!131

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

Best performers

5. Hyperparameter optimization

!132

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

5. Hyperparameter optimization

!133

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

5. Hyperparameter optimization

!134

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

• Can narrow in on very high performing
hyperparameters

• Most used method in practice

• Somewhat manual process

Advantages

etc.

5. Hyperparameter optimization

!135

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Method 5: Bayesian hyperparam opt
How it works (at a high level)

• Start with a prior estimate of parameter
distributions

• Maintain a probabilistic model of the
relationship between hyper-parameter
values and model performance

• Alternate between:

• Training with the hyper-parameter

values that maximize the expected
improvement

• Using training results to update our
probabilistic model

• To learn more, see:

 

Advantages

Disadvantages

• Generally the most efficient hands-off way
to choose hyperparameters

• Difficult to implement from scratch

• Can be hard to integrate with off-the-shelf

tools

https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f

5. Hyperparameter optimization

!136

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Summary of how to optimize hyperparams

• Coarse-to-fine random searches

• Consider Bayesian hyper-parameter
optimization solutions as your
codebase matures

5. Hyperparameter optimization

!137

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Conclusion

!138

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Conclusion

• DL debugging is hard due to many
competing sources of error

• To train bug-free DL models, we treat
building our model as an iterative process

• The following steps can make the process
easier and catch errors as early as possible

!139

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Tune hyp-
eparams

How to build bug-free DL models

Implement
& debug

Start  
simple

Evaluate

Improve
model/data

Overview

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch &
reproduce a known result

• Apply the bias-variance decomposition to
decide what to do next

• Use coarse-to-fine random searches

• Make your model bigger if you underfit; add
data or regularize if you overfit

!140

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html

Josh Tobin. January 2019. josh-tobin.com/troubleshooting-deep-neural-networks

Where to go to learn more
• Andrew Ng’s book Machine Learning

Yearning (http://www.mlyearning.org/)

• The following Twitter thread: 
https://twitter.com/karpathy/status/
1013244313327681536

• This blog post:  
https://pcc.cs.byu.edu/2017/10/02/
practical-advice-for-building-deep-neural-
networks/

!141

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html
http://www.mlyearning.org/
https://twitter.com/karpathy/status/1013244313327681536
https://twitter.com/karpathy/status/1013244313327681536
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/
https://pcc.cs.byu.edu/2017/10/02/practical-advice-for-building-deep-neural-networks/

