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Troubleshooting Deep Neural Networks

Josh Tobin (with Sergey Karayev and Pieter Abbeel)
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Help me make this guide better!
Help me find:

• Things that are unclear

• Missing debugging tips, tools, tricks, strategies

• Anything else that will make the guide better

Feedback to: 
• joshptobin [at] gmail.com

• Twitter thread (https://twitter.com/josh_tobin_)
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Why talk about DL troubleshooting?

XKCD, https://xkcd.com/1838/
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Why talk about DL troubleshooting?
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Why talk about DL troubleshooting?

Common sentiment among practitioners: 


80-90% of time debugging and tuning 


10-20% deriving math or implementing things
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Why is DL troubleshooting so hard?
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Suppose you can’t reproduce a result
Learning curve from the paper

He, Kaiming, et al. "Deep residual learning for image recognition."  
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Your learning curve

0. Why is troubleshooting hard?
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Why is your performance worse?

Poor model 
performance 

0. Why is troubleshooting hard?
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Why is your performance worse?

Poor model 
performance 

Implementation 
bugs

0. Why is troubleshooting hard?
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Most DL bugs are invisible
0. Why is troubleshooting hard?
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Labels out of order!

Most DL bugs are invisible
0. Why is troubleshooting hard?

(real bug I spent 1 day on early in my PhD)
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Why is your performance worse?

Poor model 
performance 

Implementation 
bugs

0. Why is troubleshooting hard?
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Why is your performance worse?

Poor model 
performance 

Implementation 
bugs

Hyperparameter 
choices

0. Why is troubleshooting hard?
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Andrej Karpathy, CS231n course notes

Models are sensitive to hyperparameters
0. Why is troubleshooting hard?
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Andrej Karpathy, CS231n course notes

Models are sensitive to hyperparameters
Performance of a 30-layer ResNet with 

different weight initializations

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet 
classification." Proceedings of the IEEE international conference on computer vision. 2015.

0. Why is troubleshooting hard?
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Why is your performance worse?
0. Why is troubleshooting hard?

Poor model 
performance 

Implementation 
bugs

Hyperparameter 
choices
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Why is your performance worse?

Data/model fit

0. Why is troubleshooting hard?

Poor model 
performance 

Implementation 
bugs

Hyperparameter 
choices
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Data from the paper: ImageNet

Data / model fit
Yours: self-driving car images

0. Why is troubleshooting hard?
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Why is your performance worse?
0. Why is troubleshooting hard?

Data/model fit

Poor model 
performance 

Implementation 
bugs

Hyperparameter 
choices
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Why is your performance worse?

Dataset 
construction

0. Why is troubleshooting hard?

Data/model fit

Poor model 
performance 

Implementation 
bugs

Hyperparameter 
choices
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Constructing good datasets is hard
Amount of lost sleep over...

PhD Tesla

Slide from Andrej Karpathy’s talk “Building the Software 2.0 Stack” at TrainAI 2018, 5/10/2018

0. Why is troubleshooting hard?
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Common dataset construction issues

• Not enough data


• Class imbalances


• Noisy labels


• Train / test from different distributions


• (Not the main focus of this guide)

0. Why is troubleshooting hard?
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Takeaways: why is troubleshooting hard?

• Hard to tell if you have a bug


• Lots of possible sources for the 
same degradation in performance


• Results can be sensitive to small 
changes in hyperparameters and 
dataset makeup 

0. Why is troubleshooting hard?
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Strategy for DL troubleshooting
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Key mindset for DL troubleshooting

Pessimism.
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Key idea of DL troubleshooting

Since it’s hard to 
disambiguate errors…

…Start simple and gradually 
ramp up complexity
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Tune hyper-
parameters

Implement 
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve 
model/data

Meets re-
quirements
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Quick summary
Start  

simple

Overview

• Choose the simplest model & data possible 
(e.g., LeNet on a subset of your data)
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Quick summary

Implement 
& debug

Start  
simple

Overview

• Choose the simplest model & data possible 
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch & 
reproduce a known result

!29

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html


Josh Tobin. January 2019.  josh-tobin.com/troubleshooting-deep-neural-networks

Quick summary

Implement 
& debug

Start  
simple

Evaluate

Overview

• Choose the simplest model & data possible 
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch & 
reproduce a known result

• Apply the bias-variance decomposition to 
decide what to do next
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Tune hyp-
eparams

Quick summary

Implement 
& debug

Start  
simple

Evaluate

Overview

• Choose the simplest model & data possible 
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch & 
reproduce a known result

• Apply the bias-variance decomposition to 
decide what to do next

• Use coarse-to-fine random searches
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Tune hyp-
eparams

Quick summary

Implement 
& debug

Start  
simple

Evaluate

Improve 
model/data

Overview

• Choose the simplest model & data possible 
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch & 
reproduce a known result

• Apply the bias-variance decomposition to 
decide what to do next

• Use coarse-to-fine random searches

• Make your model bigger if you underfit; add 
data or regularize if you overfit
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We’ll assume you already have…

• Initial test set


• A single metric to improve


• Target performance based on human-level 
performance, published results, previous 
baselines, etc

!33

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html


Josh Tobin. January 2019.  josh-tobin.com/troubleshooting-deep-neural-networks

We’ll assume you already have…

• Initial test set


• A single metric to improve


• Target performance based on human-level 
performance, published results, previous 
baselines, etc

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Tune hyper-
parameters

Implement 
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve 
model/data

Meets re-
quirements
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Normalize inputs

Starting simple

Choose a simple 
architecture

Simplify the problem

Use sensible defaults

Steps

b

a

c

d

1. Start simple
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Demystifying neural network architecture selection
1. Start simple

Your input data is… Start here Consider using this later

Images LeNet-like architecture

LSTM with one hidden 
layer

Fully connected neural net 
with one hidden layer

ResNet

Attention model or 
WaveNet-like model

Problem-dependent

Images

Sequences

Other
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Dealing with multiple input modalities

“This”

“is”

“a”

“cat”

1. Start simple

Input 1

Input 2

Input 3
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Dealing with multiple input modalities

“This”

“is”

“a”

“cat”

1. Map each input into a (lower-dimensional) feature space

1. Start simple

Input 2

Input 3

Input 1
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Dealing with multiple input modalities

1. Map each input into a (lower-dimensional) feature space
ConvNet Flatten

(64-dim)

(72-dim)

 (48-dim)

“This”

“is”

“a”

“cat”

LSTM

1. Start simple

Input 2

Input 3

Input 1
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Dealing with multiple input modalities

2. Concatenate
ConvNet Flatten Con“cat”

“This”

“is”

“a”

“cat”

LSTM

(184-dim)

1. Start simple

Input 2

Input 3

Input 1

(64-dim)

(72-dim)

 (48-dim)
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Dealing with multiple input modalities

3. Pass through fully connected layers to output
ConvNet Flatten Concat

“This”

“is”

“a”

“cat”

LSTM

FC FC Output

T/F

1. Start simple

Input 2

Input 3

Input 1

(64-dim)

(72-dim)

 (48-dim)

(184-dim)

(256-dim)

(128-dim)
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Normalize inputs

Starting simple

Choose a simple 
architecture

Simplify the problem

Use sensible defaults

Steps

b

a

c

d

1. Start simple
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Recommended network / optimizer defaults

• Optimizer: Adam optimizer with learning rate 3e-4 

• Activations: relu (FC and Conv models), tanh (LSTMs) 

• Initialization: He et al. normal (relu),  Glorot normal (tanh)


• Regularization: None


• Data normalization: None

1. Start simple
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Definitions of recommended initializers
• (n is the number of inputs, m is 

the number of outputs) 

• He et al. normal (used for ReLU) 
 
 
 

• Glorot normal (used for tanh)

1. Start simple

N
 
0,

r
2

n

!
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N
 
0,

r
2

n+m
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Normalize inputs

Starting simple

Choose a simple 
architecture

Simplify the problem

Use sensible defaultsb

a

c

Steps

d

1. Start simple
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Important to normalize scale of input data

• Subtract mean and divide by variance 


• For images, fine to scale values to [0, 1]  
(e.g., by dividing by 255) 
[Careful, make sure your library doesn’t do it for you!]

1. Start simple
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Normalize inputs

Starting simple

Choose a simple 
architecture

Simplify the problem

Use sensible defaultsb

a

c

Steps

d

1. Start simple
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Consider simplifying the problem as well

• Start with a small training set (~10,000 examples)


• Use a fixed number of objects, classes, smaller 
image size, etc.


• Create a simpler synthetic training set

1. Start simple
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Simplest model for pedestrian detection

• Start with a subset of 10,000 images 
for training, 1,000 for val, and 500 for 
test


• Use a LeNet architecture with 
sigmoid cross-entropy loss


• Adam optimizer with LR 3e-4


• No regularization

1. Start simple

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Normalize inputs

Starting simple
Choose a simple 

architecture

Simplify the problem

Use sensible defaultsb

a

c

Steps

d

Summary
• LeNet, LSTM, or Fully 

Connected

• Start with a simpler 
version of your problem 
(e.g., smaller dataset)

• Adam optimizer & no 
regularization

• Subtract mean and divide 
by std, or just divide by 
255 (ims)

1. Start simple
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Tune hyper-
parameters

Implement 
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve 
model/data

Meets re-
quirements
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Implementing bug-free DL models

Get your model to 
run

Compare to a 
known result

Overfit a single 
batchb

a

c

Steps

2. Implement & debug

!53

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html


Josh Tobin. January 2019.  josh-tobin.com/troubleshooting-deep-neural-networks

Preview: the five most common DL bugs
• Incorrect shapes for your tensors 

Can fail silently! E.g., accidental broadcasting: x.shape = 
(None,), y.shape = (None, 1), (x+y).shape = (None, None)


• Pre-processing inputs incorrectly  
E.g., Forgetting to normalize, or too much pre-processing


• Incorrect input to your loss function  
E.g., softmaxed outputs to a loss that expects logits


• Forgot to set up train mode for the net correctly  
E.g., toggling train/eval, controlling batch norm dependencies 


• Numerical instability - inf/NaN 
Often stems from using an exp, log, or div operation

2. Implement & debug
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General advice for implementing your model
Lightweight implementation 

• Minimum possible new lines of code 
for v1


• Rule of thumb: <200 lines


• (Tested infrastructure components 
are fine)

2. Implement & debug
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General advice for implementing your model
Lightweight implementation 

• Minimum possible new lines of code 
for v1


• Rule of thumb: <200 lines


• (Tested infrastructure components 
are fine)

2. Implement & debug

Use off-the-shelf components, e.g.,  

• Keras


• tf.layers.dense(…)  
instead of  
tf.nn.relu(tf.matmul(W, x)) 

• tf.losses.cross_entropy(…)  
instead of writing out the exp
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General advice for implementing your model
Lightweight implementation 

• Minimum possible new lines of code 
for v1


• Rule of thumb: <200 lines


• (Tested infrastructure components 
are fine)

2. Implement & debug

Build complicated data pipelines later 

• Start with a dataset you can load into 
memory

Use off-the-shelf components, e.g.,  

• Keras


• tf.layers.dense(…)  
instead of  
tf.nn.relu(tf.matmul(W, x)) 

• tf.losses.cross_entropy(…)  
instead of writing out the exp
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Implementing bug-free DL models

Get your model to 
run

Compare to a 
known result

Overfit a single 
batchb

a

c

Steps

2. Implement & debug
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Get your model to 
runa Shape 

mismatch

Casting 
issue

OOM

Other

Common 
issues Recommended resolution

Step through model creation and 
inference in a debugger

Scale back memory intensive 
operations one-by-one

Standard debugging toolkit (Stack 
Overflow + interactive debugger)

2. Implement & debug

Implementing bug-free DL models
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Get your model to 
runa Shape 

mismatch

Casting 
issue

OOM

Other

Common 
issues Recommended resolution

Step through model creation and 
inference in a debugger

Scale back memory intensive 
operations one-by-one

Standard debugging toolkit (Stack 
Overflow + interactive debugger)

2. Implement & debug

Implementing bug-free DL models
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Debuggers for DL code
• Pytorch: easy, use ipdb


• tensorflow: trickier  
 
Option 1: step through graph creation

2. Implement & debug
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Debuggers for DL code
• Pytorch: easy, use ipdb


• tensorflow: trickier  
 
Option 2: step into training loop

Evaluate tensors using sess.run(…)

2. Implement & debug
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Debuggers for DL code
• Pytorch: easy, use ipdb


• tensorflow: trickier  
 
Option 3: use tfdb

Stops 
execution at 
each 
sess.run(…) 
and lets you 
inspect

python -m tensorflow.python.debug.examples.debug_mnist --debug

2. Implement & debug
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Get your model to 
runa Shape 

mismatch

Casting 
issue

OOM

Other

Common 
issues Recommended resolution

Step through model creation and 
inference in a debugger

Scale back memory intensive 
operations one-by-one

Standard debugging toolkit (Stack 
Overflow + interactive debugger)

Implementing bug-free DL models
2. Implement & debug
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Shape 
mismatch Undefined 

shapes

Incorrect 
shapes

Common 
issues Most common causes

• Confusing tensor.shape, tf.shape(tensor), 
tensor.get_shape() 

• Reshaping things to a shape of type Tensor (e.g., 
when loading data from a file)

• Flipped dimensions when using tf.reshape(…) 
• Took sum, average, or softmax over wrong 

dimension 
• Forgot to flatten after conv layers 
• Forgot to get rid of extra “1” dimensions (e.g., if 

shape is (None, 1, 1, 4) 
• Data stored on disk in a different dtype than 

loaded (e.g., stored a float64 numpy array, and 
loaded it as a float32)

Implementing bug-free DL models
2. Implement & debug
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Casting issue
Data not in 

float32

Common 
issues Most common causes

• Forgot to cast images from uint8 to float32 
• Generated data using numpy in float64, forgot to 

cast to float32

Implementing bug-free DL models
2. Implement & debug
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OOM
Too big a 

tensor

Too much 
data 

Common 
issues Most common causes

Duplicating 
operations

Other 
processes

• Other processes running on your GPU

• Memory leak due to creating multiple models in 
the same session 

• Repeatedly creating an operation (e.g., in a 
function that gets called over and over again)

• Too large a batch size for your model (e.g., 
during evaluation) 

• Too large fully connected layers

• Loading too large a dataset into memory, rather 
than using an input queue 

• Allocating too large a buffer for dataset creation

Implementing bug-free DL models
2. Implement & debug
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Other common 
errors Other bugs

Common 
issues Most common causes

• Forgot to initialize variables 
• Forgot to turn off bias when using batch norm  
• “Fetch argument has invalid type” - usually you 

overwrote one of your ops with an output during 
training

Implementing bug-free DL models
2. Implement & debug
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Get your model to 
run

Compare to a 
known result

Overfit a single 
batchb

a

c

Steps

Implementing bug-free DL models
2. Implement & debug
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Overfit a single 
batchb

Error goes up

Error oscillates

Common 
issues

Error explodes

Error plateaus

Most common causes

Implementing bug-free DL models
2. Implement & debug
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Overfit a single 
batchb

Error goes up

Error oscillates

Common 
issues

Error explodes

Error plateaus

• Flipped the sign of the loss function / gradient 
• Learning rate too high 
• Softmax taken over wrong dimension

Most common causes

Implementing bug-free DL models
2. Implement & debug
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Overfit a single 
batchb

Error goes up

Error oscillates

Common 
issues

Error explodes

Error plateaus

Most common causes

• Numerical issue. Check all exp, log, and div operations 
• Learning rate too high

Implementing bug-free DL models
2. Implement & debug
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Overfit a single 
batchb

Error goes up

Error oscillates

Common 
issues

Error explodes

Error plateaus

Most common causes

• Data or labels corrupted (e.g., zeroed, incorrectly 
shuffled, or preprocessed incorrectly) 

• Learning rate too high

Implementing bug-free DL models
2. Implement & debug
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Overfit a single 
batchb

Error goes up

Error oscillates

Common 
issues

Error explodes

Error plateaus

Most common causes

• Learning rate too low 
• Gradients not flowing through the whole model 
• Too much regularization 
• Incorrect input to loss function (e.g., softmax instead of 

logits) 
• Data or labels corrupted

Implementing bug-free DL models
2. Implement & debug
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Overfit a single 
batchb

Error goes up

Error oscillates

Common 
issues

Error explodes

Error plateaus

• Flipped the sign of the loss function / gradient 
• Learning rate too high 
• Softmax taken over wrong dimension

Most common causes

• Numerical issue. Check all exp, log, and div operations 
• Learning rate too high

• Data or labels corrupted (e.g., zeroed or incorrectly 
shuffled) 

• Learning rate too high

• Learning rate too low 
• Gradients not flowing through the whole model 
• Too much regularization 
• Incorrect input to loss function (e.g., softmax instead of 

logits) 
• Data or labels corrupted

Implementing bug-free DL models
2. Implement & debug
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Get your model to 
run

Compare to a 
known result

Overfit a single 
batchb

a

c

Steps

Implementing bug-free DL models
2. Implement & debug
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Hierarchy of known results
• Official model implementation evaluated on similar 

dataset to yoursMore 
useful

Less 
useful

You can:  

• Walk through code line-by-line and 
ensure you have the same output 

• Ensure your performance is up to par 
with expectations

2. Implement & debug
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Hierarchy of known results
• Official model implementation evaluated on similar 

dataset to yours


• Official model implementation evaluated on benchmark 
(e.g., MNIST)

More 
useful

Less 
useful

You can:  

• Walk through code line-by-line and 
ensure you have the same output

2. Implement & debug
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Hierarchy of known results
• Official model implementation evaluated on similar dataset 

to yours


• Official model implementation evaluated on benchmark 
(e.g., MNIST)


• Unofficial model implementation


• Results from the paper (with no code)


• Results from your model on a benchmark dataset (e.g., 
MNIST)


• Results from a similar model on a similar dataset


• Super simple baselines (e.g., average of outputs or linear 
regression)

More 
useful

Less 
useful

You can:  

• Same as before, but with lower 
confidence

2. Implement & debug
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Hierarchy of known results
• Official model implementation evaluated on similar 

dataset to yours


• Official model implementation evaluated on benchmark 
(e.g., MNIST)


• Unofficial model implementation


• Results from a paper (with no code)

More 
useful

Less 
useful

You can:  

• Ensure your performance is up to par 
with expectations

2. Implement & debug
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Hierarchy of known results
• Official model implementation evaluated on similar 

dataset to yours


• Official model implementation evaluated on benchmark 
(e.g., MNIST)


• Unofficial model implementation


• Results from the paper (with no code)


• Results from your model on a benchmark dataset (e.g., 
MNIST)

More 
useful

Less 
useful

You can:  

• Make sure your model performs well in a 
simpler setting

2. Implement & debug
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Hierarchy of known results
• Official model implementation evaluated on similar dataset 

to yours


• Official model implementation evaluated on benchmark 
(e.g., MNIST)


• Unofficial model implementation


• Results from the paper (with no code)


• Results from your model on a benchmark dataset (e.g., 
MNIST)


• Results from a similar model on a similar dataset


• Super simple baselines (e.g., average of outputs or linear 
regression)

More 
useful

Less 
useful

You can:  

• Get a general sense of what kind of 
performance can be expected

2. Implement & debug
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Hierarchy of known results
• Official model implementation evaluated on similar dataset 

to yours


• Official model implementation evaluated on benchmark 
(e.g., MNIST)


• Unofficial model implementation


• Results from the paper (with no code)


• Results from your model on a benchmark dataset (e.g., 
MNIST)


• Results from a similar model on a similar dataset


• Super simple baselines (e.g., average of outputs or linear 
regression)

More 
useful

Less 
useful

You can:  

• Make sure your model is learning 
anything at all

2. Implement & debug
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Hierarchy of known results
• Official model implementation evaluated on similar dataset 

to yours


• Official model implementation evaluated on benchmark 
(e.g., MNIST)


• Unofficial model implementation


• Results from the paper (with no code)


• Results from your model on a benchmark dataset (e.g., 
MNIST)


• Results from a similar model on a similar dataset


• Super simple baselines (e.g., average of outputs or linear 
regression)

More 
useful

Less 
useful

2. Implement & debug
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Summary: how to implement & debug
2. Implement & debug

Get your model to 
run

Compare to a 
known result

Overfit a single 
batchb

a

c

Steps Summary

• Step through in debugger & watch out 
for shape, casting, and OOM errors

• Look for corrupted data, over-
regularization, broadcasting errors

• Keep iterating until model performs 
up to expectations
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Tune hyper-
parameters

Implement 
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve 
model/data

Meets re-
quirements
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Bias-variance decomposition
3. Evaluation
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Bias-variance decomposition
3. Evaluation

!88

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html


Josh Tobin. January 2019.  josh-tobin.com/troubleshooting-deep-neural-networks

Bias-variance decomposition
3. Evaluation
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Bias-variance decomposition
3. Evaluation
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Test error = irreducible error + bias + variance + val overfitting 

This assumes train, val, and test all come from the same 
distribution. What if not?

Bias-variance decomposition
3. Evaluation
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Handling distribution shift

Train data Test data

Use two val sets: one sampled from training distribution and 
one from test distribution

3. Evaluation
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The bias-variance tradeoff
3. Evaluation

!93

http://josh-tobin.com/debugging.html
http://josh-tobin.com/troubleshooting-deep-neural-networks.html


Josh Tobin. January 2019.  josh-tobin.com/troubleshooting-deep-neural-networks

Bias-variance with distribution shift
3. Evaluation
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Bias-variance with distribution shift
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3. Evaluation
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Train, val, and test error for pedestrian detection

Error source Value

Goal 
performance 1%

Train error 20%

Validation error 27%

Test error 28%

Train - goal = 19% 
(under-fitting)

3. Evaluation

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value

Goal 
performance 1%

Train error 20%

Validation error 27%

Test error 28%

Val - train = 7% 
(over-fitting)

3. Evaluation

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value

Goal 
performance 1%

Train error 20%

Validation error 27%

Test error 28%

Test - val = 1% 
(looks good!)

3. Evaluation

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Test error = irreducible error + bias + variance  
                     + distribution shift + val overfitting

Summary: evaluating model performance
3. Evaluation
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Tune hyper-
parameters

Implement 
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve 
model/data

Meets re-
quirements
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Address distribution 
shift

Prioritizing improvements  
(i.e., applying the bias-variance tradeoff)

Address under-fitting

Re-balance datasets  
(if applicable)

Address over-fittingb

a

c

Steps

d

4. Prioritize improvements
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Addressing under-fitting (i.e., reducing bias)

Try first

Try later

A. Make your model bigger (i.e., add layers or use 
more units per layer)


B. Reduce regularization


C. Error analysis


D. Choose a different (closer to state-of-the art) 
model architecture (e.g., move from LeNet to 
ResNet)


E. Tune hyper-parameters (e.g., learning rate)


F. Add features

4. Prioritize improvements
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Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy             
          (i.e., 1% error)

Error source Value Value

Goal performance 1% 1%

Train error 20% 7%

Validation error 27% 19%

Test error 28% 20%

Add more layers 
to the ConvNet

4. Prioritize improvements
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Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy             
          (i.e., 1% error)

Error source Value Value Value

Goal performance 1% 1% 1%

Train error 20% 10% 3%

Validation error 27% 19% 10%

Test error 28% 20% 10%

Switch to 
ResNet-101

4. Prioritize improvements
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Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy             
          (i.e., 1% error)

Error source Value Value Value Value

Goal performance 1% 1% 1% 1%

Train error 20% 10% 3% 0.8%

Validation error 27% 19% 10% 12%

Test error 28% 20% 10% 12%

Tune learning 
rate

4. Prioritize improvements
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Prioritizing improvements  
(i.e., applying the bias-variance tradeoff)

4. Prioritize improvements
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Address distribution 
shift

Address under-fitting

Re-balance datasets  
(if applicable)

Address over-fittingb

a

c

Steps

d
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Addressing over-fitting (i.e., reducing variance)
Try first

Try later

A. Add more training data (if possible!)


B. Add normalization (e.g., batch norm, layer norm)


C. Add data augmentation


D. Increase regularization (e.g., dropout,  L2, weight decay)


E. Error analysis


F. Choose a different (closer to state-of-the-art) model 
architecture


G. Tune hyperparameters


H. Early stopping


I. Remove features


J. Reduce model size

4. Prioritize improvements
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Addressing over-fitting (i.e., reducing variance)
Try first

Try later

A. Add more training data (if possible!)


B. Add normalization (e.g., batch norm, layer norm)


C. Add data augmentation


D. Increase regularization (e.g., dropout,  L2, weight decay)


E. Error analysis


F. Choose a different (closer to state-of-the-art) model 
architecture


G. Tune hyperparameters


H. Early stopping


I. Remove features


J. Reduce model size

4. Prioritize improvements

Not 
recommended!
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Train, val, and test error for pedestrian detection

Error source Value

Goal performance 1%

Train error 0.8%

Validation error 12%

Test error 12%

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value Value

Goal performance 1% 1%

Train error 0.8% 1.5%

Validation error 12% 5%

Test error 12% 6%

Increase dataset 
size to 250,000

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value Value Value

Goal performance 1% 1% 1%

Train error 0.8% 1.5% 1.7%

Validation error 12% 5% 4%

Test error 12% 6% 4%

Add weight 
decay

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value Value Value Value

Goal performance 1% 1% 1% 1%

Train error 0.8% 1.5% 1.7% 2%

Validation error 12% 5% 4% 2.5%

Test error 12% 6% 4% 2.6%

Add data 
augmentation

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value Value Value Value Value

Goal performance 1% 1% 1% 1% 1%

Train error 0.8% 1.5% 1.7% 2% 0.6%

Validation error 12% 5% 4% 2.5% 0.9%

Test error 12% 6% 4% 2.6% 1.0%

Tune num layers, optimizer params, weight 
initialization, kernel size, weight decay

4. Prioritize improvements

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Prioritizing improvements  
(i.e., applying the bias-variance tradeoff)

4. Prioritize improvements

!114

Address distribution 
shift

Address under-fitting

Re-balance datasets  
(if applicable)

Address over-fittingb

a

c

Steps

d
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Addressing distribution shift

Try first

Try later

A. Analyze test-val set errors & collect more 
training data to compensate


B. Analyze test-val set errors & synthesize more 
training data to compensate


C. Apply domain adaptation techniques to 
training & test distributions

4. Prioritize improvements
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Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

4. Prioritize improvements
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Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 1: hard-to-see 
pedestrians

4. Prioritize improvements
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Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 2: reflections

4. Prioritize improvements
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Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 3 (test-val only): 
night scenes

4. Prioritize improvements
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Error analysis
Error type Error % 

(train-val)
Error % 
(test-val) Potential solutions Priority

1. Hard-to-see 
pedestrians 0.1% 0.1% • Better sensors Low

2. Reflections 0.3% 0.3%
• Collect more data with reflections

• Add synthetic reflections to train set

• Try to remove with pre-processing

• Better sensors

Medium

3. Nighttime 
scenes 0.1% 1%

• Collect more data at night

• Synthetically darken training images

• Simulate night-time data

• Use domain adaptation

High

4. Prioritize improvements
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Domain adaptation

What is it?

Techniques to train on “source” 
distribution and generalize to another 
“target” using only unlabeled data or 

limited labeled data

When should you consider using it?

• Access to labeled data from test 
distribution is limited


• Access to relatively similar data is 
plentiful

4. Prioritize improvements
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Types of domain adaptation

Type Use case Example techniques

Supervised You have limited data 
from target domain

• Fine-tuning a pre-
trained model


• Adding target data to 
train set

Un-supervised
You have lots of un-
labeled data from target 
domain

• Correlation Alignment 
(CORAL)


• Domain confusion

• CycleGAN

4. Prioritize improvements
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Prioritizing improvements  
(i.e., applying the bias-variance tradeoff)

4. Prioritize improvements

!123

Address distribution 
shift

Address under-fitting

Re-balance datasets  
(if applicable)

Address over-fittingb

a

c

Steps

d
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Rebalancing datasets
4. Prioritize improvements

• If (test)-val looks significantly better than test, 
you overfit to the val set


• This happens with small val sets or lots of hyper 
parameter tuning


• When it does, recollect val data
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Tune hyper-
parameters

Implement 
& debug

Strategy for DL troubleshooting

Start simple Evaluate

Improve 
model/data

Meets re-
quirements
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Hyperparameter optimization
Model & optimizer choices?

Network:   ResNet

    - How many layers?

    - Weight initialization?

    - Kernel size? 

    - Etc

Optimizer: Adam

    - Batch size?

    - Learning rate?

    - beta1, beta2, epsilon? 

Regularization

    - …. 
     

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

5. Hyperparameter optimization
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Which hyper-parameters to tune?
Choosing hyper-parameters

• More sensitive to some than others

• Depends on choice of model

• Rules of thumb (only) to the right

• Sensitivity is relative to default values!  

(e.g., if you are using all-zeros weight 
initialization or vanilla SGD, changing to the 
defaults will make a big difference)

Hyperparameter Approximate sensitivity
Learning rate High

Optimizer choice Low
Other optimizer params 

(e.g., Adam beta1) Low

Batch size Low
Weight initialization Medium

Loss function High
Model depth Medium

Layer size High
Layer params  

(e.g., kernel size) Medium

Weight of regularization Medium
Nonlinearity Low

5. Hyperparameter optimization
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Method 1: manual hyperparam optimization 
How it works

• Understand the algorithm

• E.g., higher learning rate means faster 

less stable training

• Train & evaluate model

• Guess a better hyperparam value & re-

evaluate 

• Can be combined with other methods 

(e.g., manually select parameter ranges to 
optimizer over)

Advantages

Disadvantages

• For a skilled practitioner, may require least 
computation to get good result

• Requires detailed understanding of the 
algorithm


• Time-consuming

5. Hyperparameter optimization
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Method 2: grid search 
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

., 
ba

tc
h 

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

• Super simple to implement

• Can produce good results

• Not very efficient: need to train on all 
cross-combos of hyper-parameters


• May require prior knowledge about 
parameters to get 
good results

Advantages

5. Hyperparameter optimization
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Best performers

5. Hyperparameter optimization
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Method 4: coarse-to-fine
H
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)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

• Can narrow in on very high performing 
hyperparameters


• Most used method in practice

• Somewhat manual process

Advantages

etc.

5. Hyperparameter optimization
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Method 5: Bayesian hyperparam opt
How it works (at a high level)

• Start with a prior estimate of parameter 
distributions


• Maintain a probabilistic model of the 
relationship between hyper-parameter 
values and model performance


• Alternate between:

• Training with the hyper-parameter 

values that maximize the expected 
improvement


• Using training results to update our 
probabilistic model


• To learn more, see:

 

Advantages

Disadvantages

• Generally the most efficient hands-off way 
to choose hyperparameters

• Difficult to implement from scratch

• Can be hard to integrate with off-the-shelf 

tools

https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f

5. Hyperparameter optimization
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Summary of how to optimize hyperparams

• Coarse-to-fine random searches


• Consider Bayesian hyper-parameter 
optimization solutions as your 
codebase matures

5. Hyperparameter optimization
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Conclusion
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Conclusion

• DL debugging is hard due to many 
competing sources of error 

• To train bug-free DL models, we treat 
building our model as an iterative process 

• The following steps can make the process 
easier and catch errors as early as possible
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Tune hyp-
eparams

How to build bug-free DL models

Implement 
& debug

Start  
simple

Evaluate

Improve 
model/data

Overview

• Choose the simplest model & data possible 
(e.g., LeNet on a subset of your data)

• Once model runs, overfit a single batch & 
reproduce a known result

• Apply the bias-variance decomposition to 
decide what to do next

• Use coarse-to-fine random searches

• Make your model bigger if you underfit; add 
data or regularize if you overfit
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Where to go to learn more
• Andrew Ng’s book Machine Learning 

Yearning (http://www.mlyearning.org/)


• The following Twitter thread: 
https://twitter.com/karpathy/status/
1013244313327681536


• This blog post:  
https://pcc.cs.byu.edu/2017/10/02/
practical-advice-for-building-deep-neural-
networks/
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