Geometry-Aware Neural Rendering

Josh Tobin, OpenAI Robotics, Pieter Abbeel
Robots need to understand the world to act
Visuomotor policies

Noisy observations

Action

\[\pi(o) \mapsto a \]
State estimation + control

Noisy observations → State representation S → Policy $\pi(s) \mapsto a$ → Action
How to model more complex states?

From…

…To
Model the state of the world implicitly

The Neural Rendering problem

Context viewpoints

\(v^1 \)

\(v^2 \)

Arbitrary query viewpoint

\(v^q \)
Motivation: Generative Query Nets (GQN)

Motivation: Generative Query Nets (GQN)

Motivation: Generative Query Nets (GQN)

Our work: extends GQN to…

- Higher-dimensional images
- Objects with many degrees of freedom
- Wider range of more realistic objects
Our approach: add attention

\[v^1 \rightarrow r^1 \rightarrow r \rightarrow h_1 \rightarrow h_2 \rightarrow \cdots \rightarrow h_L \]

\[v^2 \rightarrow r^2 \rightarrow r \rightarrow h_1 \rightarrow h_2 \rightarrow \cdots \rightarrow h_L \]

Representation Network

Generation Network
Our approach: add attention

Representation Network

Generation Network

\[v^q \]

\[h_1 \rightarrow h_2 \rightarrow \cdots \rightarrow h_L \]

\[z \]
Our approach: add attention

Representation Network

Generation Network

ν^1 r^1 h_1 h_2 \cdots h_L ν^q z
Our approach: add attention

Representation Network

Attention Mechanism

Generation Network
Our approach: add attention
Attention mechanism: intuition

Context image

Target image
Attention mechanism: intuition

$O(n^2)$ comparisons for each pixel
Epipolar geometry
Epipolar geometry

Context image

Target image

True 3D point
Epipolar geometry

Context image

Target image

Image of 3D point

$O(n)$ comparisons for each pixel
Epipolar attention

Representation Network

Attention Mechanism

Generation Network

v^1

r^1

v^q

$h_1 \rightarrow h_2 \rightarrow \cdots \rightarrow h_L$

z
Epipolar attention
Epipolar attention

Attention mechanism

Generation Network

v^1

v^q

h_1

v^1

v^q

h_1
Epipolar attention

Generation Network

Attention mechanism

$v_1 \rightarrow r_1 \rightarrow v_1 \rightarrow v_q \rightarrow h_1$
Epipolar attention
Epipolar attention

Generation Network
Epipolar attention

[Diagram showing epipolar attention mechanism]

$v^1 \rightarrow r^1 \rightarrow h_1$,

$v^q \rightarrow$ Attention mechanism

Generation Network
Epipolar attention

Generation Network

Attention mechanism

$v^1 \rightarrow r^1 \rightarrow e^1 \rightarrow h_1$
Epipolar attention

Attention mechanism

\[v^q \]

Generation Network

\[e^1 \]

\[h_1 \rightarrow \cdots \rightarrow h_{l-1} \]
Epipolar attention

Generation Network

Attention mechanism

v^1, r^1, e^1, h_l, h_{l-1}
Epipolar attention

\[\nu^1 \xrightarrow{} r^1 \rightarrow e^1 \rightarrow h_1 \rightarrow \cdots \]

Attention mechanism

Generation Network
Epipolar attention

\[v^1 \rightarrow r^1 \rightarrow e^1 \rightarrow h_{l-1} \rightarrow a^1_l \rightarrow h_1 \rightarrow \cdots \]

Attention mechanism

Generation Network
Epipolar attention

\[v^1 \to r^1 \to e^1 \to a^1_l \to h_1 \to \ldots \to h_{l-1} \]

\[\nu^q \]

Attention mechanism

Generation Network
Epipolar attention

<table>
<thead>
<tr>
<th>Generation Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>v^1</td>
</tr>
<tr>
<td>r^1</td>
</tr>
<tr>
<td>e^1</td>
</tr>
<tr>
<td>a^1_l</td>
</tr>
<tr>
<td>h_1</td>
</tr>
<tr>
<td>h_{l-1}</td>
</tr>
<tr>
<td>h_l</td>
</tr>
</tbody>
</table>

Attention mechanism
Examples

Context	Target	GQN	E-GQN

[Images of examples]
Examples

Context

Target

GQN

E-GQN
Examples
Conclusion

• Geometrically-inspired neural network primitives improve implicit 3D understanding
Questions?

• arXiv: 1911.04554

• Poster session: Wed Dec 11th 05:00 - 07:00 PM @ East Exhibition Hall B + C #128

• Twitter: @josh_tobin_