Geometry-Aware Neural Rendering

Josh Tobin, OpenAl Robotics, Pieter Abbeel

How to model complex robots scenes?

From...

Josh Tobin

...То

Model the state of all objects?

- Scales with scene complexity
- How to deal with complex internal state?
- How to deal with out-ofdistribution?

- Can be data inefficient \bullet
- May require learning from scratch (which can be dangerous)
- Often lacks reusability

Only use the state implicitly?

Model the 3D structure of the scene?

- High-dimensional representations scale poorly with scene detail
- No notion of semantics

Model the 3D structure implicitly?

The Neural Rendering problem

Josh Tobin

Random viewpoints

Arbitrary "query" viewpoint

Motivation: Generative Query Nets

Prediction Truth

Α

Eslami, SM Ali, et al. "Neural scene representation and rendering." Science 360.6394 (2018): 1204-1210.

Josh Tobin

Observation

Prediction Truth

Motivation: Generative Query Nets

Eslami, SM Ali, et al. "Neural scene representation and rendering." Science 360.6394 (2018): 1204-1210.

Josh Tobin

Generation network g

- Can it scale to high(er)-dimensional images (GQN is 64x64)?
- Does it work for objects with complex state?
- Does it work for a wide range of realistic objects?
- Is it useful for downstream robotics tasks?

Key questions

Potential limitations

- Scene representation is a sum each feature contains only local information
- Rendering process cannot interact with the full representations (except through backprop)

Geometry-Aware Neural Rendering

10

Background: Epipolar Geometry

Left view

Josh Tobin

Geometry-Aware Neural Rendering

11

Our Approach

Josh Tobin

Generation network

Epipolar extraction

Josh Tobin

Geometry-Aware Neural Rendering

13

Josh Tobin

Attention mechanism

	Mean Absolute Error (pixels)		Root Mean Squared Error (pixels)		ELBO (nats / dim)	
Dataset	GQN	E-GQN	GQN	E-GQN	GQN	E-GQN
rrc	7.40 ± 6.22	3.59 ± 2.10	14.62 ± 12.77	6.80 ± 5.23	0.5637 ± 0.0013	0.5629 ± 0.0008
rfc	12.44 ± 12.89	12.05 ± 12.79	26.80 ± 21.35	27.65 ± 20.72	0.5637 ± 0.0011	0.5639 ± 0.0012
jaco	4.30 ± 1.12	4.00 ± 0.90	8.58 ± 2.94	7.43 ± 2.32	0.5634 ± 0.0007	0.5631 ± 0.0005
sm7	3.13 ± 1.30	2.14 ± 0.53	9.97 ± 4.34	5.63 ± 2.21	0.5637 ± 0.0009	0.5628 ± 0.0004
oab	10.99 ± 5.13	5.47 ± 2.54	22.11 ± 8.00	10.39 ± 4.55	1.2587 ± 0.0018	1.2569 ± 0.0011
disco	18.86 ± 7.16	12.46 ± 9.27	32.72 ± 6.32	$\textbf{22.04} \pm \textbf{11.08}$	1.2635 ± 0.0055	1.2574 ± 0.0007
rro	10.12 ± 5.15	6.59 ± 3.23	19.63 ± 9.14	12.08 ± 6.52	1.2573 ± 0.0011	1.2566 ± 0.0009

Josh Tobin

Does it help?

Context

Josh Tobin

Examples **E-GQN** GQN

0

٩0

Target

Context

Josh Tobin

Target

Context

Josh Tobin

- Geometrically-inspired neural network primitives improve implicit 3D understanding
- Forcing the model to understand geometry can improve downstream robotic tasks
- How to go from this to general 3D understanding?

